If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=24.5
We move all terms to the left:
X^2+X-(24.5)=0
We add all the numbers together, and all the variables
X^2+X-24.5=0
a = 1; b = 1; c = -24.5;
Δ = b2-4ac
Δ = 12-4·1·(-24.5)
Δ = 99
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{99}=\sqrt{9*11}=\sqrt{9}*\sqrt{11}=3\sqrt{11}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{11}}{2*1}=\frac{-1-3\sqrt{11}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{11}}{2*1}=\frac{-1+3\sqrt{11}}{2} $
| 13x+4+5x+3+17=180 | | 13x+4+5x+3=17 | | 176-v=279 | | -v+239=63 | | 19x5/2x=34 | | 211=-y+46 | | 115-u=228 | | 3+k/2=1 | | 9x-8=3x-6 | | 4(c-13)=12 | | 14x+3=10+13x | | 1=n+1/3 | | c+7/4=3 | | 3n+18+2n+12=180 | | 2(m-9)=-8 | | -9(b-89)=-9 | | -4c+23=-37 | | 4h-10=86 | | 3b-2-2=5 | | 6z-109=65 | | 6z-109+65=180 | | 6z-109+65=108 | | 1=d-7/2 | | d=170 | | d=90 | | 1165=15p+40 | | 4(2x-7)=-45+33 | | -6a-5=-96 | | 2=j-79 | | -7(v+9)=9v+-31 | | -7(v+9)=9v=-31 | | r-25=61 |